% ° ° . °
Designing Application Protocols for
TCP/IP

phen Cleary

\ /

/ e

Who is Stephen Cleary?

Most TCP/IP experience came from 7 years of work as
a systems integrator for Jervis B. Webb Company.

“The TCP/IP guy” - designed current AGV protocol.

Clients: GM (auto assembly lines), Syracuse News
(paper delivery), Estee Lauder, RR Donnelley
(bottling), Ricoh (toner), BlueScope Steel. (all 24x7)

Components: AGVs, printing presses, hot backup
systems, smart clients; many “bridge” devices to
translate TCP/IP to/from serial or non-IP networks.

Wrote C# socket class wrappers (part of Nito.Async).
http://nitoprograms.blogspot.com

/

/V

—

/

What is an “Application Protocol”?

An application protocol is all the communication
above the TCP/IP layer.

Examples: HTTP, FTP, POP, SOAP/HTTP.

We will cover: Four important guidelines for TCP/IP
application protocol design; XML over TCP/IP.

We won't cover: UDP, implementation specifics (e.g.,
optimal error recovery for the WinSock API).

For C# implementation specifics, my blog has a
TCP/IP .NET Sockets FAQ.

http://nitoprograms.blogspot.com

{The OSI Model (Open Systems Interconnection)

© Copyright 2008 Steven Iveson
www.networkstuff.eu

APPLICATION

Provides services/protocols fo
applications

FTP, HTTP, NFS, X.400,
Telnet, SNMP

PRESENTATION

Data formatting, i.e. ANSI
Compression/Encryption

Binary, ASCII, GIF
Compression,
Encryption

SESSION

Controls conversations/Sessions
(Dialog. Control)
Integrity and Reliability
Descriptive naming

Y

SMB, RPC, SQL

TRANSPORT

T

agmentation/Sequencing of data
Reliable delivery
Error recovery
Flow Control
Muliplexing(PORTS)

Y

Transparent data

Some Firewalls

TCP
upp
SPX

Y

NETWORK

B IR > FYSE RS C B

End to end delivery
Loglcal addressing
Fragmentation/Sequencing
for MTU
Routing

s
'

IP, IPX, Appletalk,
ARP, RIP, OSPF, ICMP

Bit or Data-Stream

™

LLC

DATA-LINK

MAC

Physical addressing
Error detection (FCS/CRC)
Acknowledgements

Packet/Frame header and frailer

bridging

Bridges or Switches

00 000 8-

Ethernet 802.3/.2
Token Ring 802.5/.2
HDLC, ARPA, F.R

N

PHYSICAL

—&—

Media interface
Transmition method
Signal strength
Topology

Network Cards

RS232, RJ45

- r 2
ENCAPSULATION
.
408
a
o =
£ € | =2
o a|lz |«
w | e
4 2 s |0
O os
5 Rl
o
o | w
{ 4 x 55
¥ | a2
O | w
4 [
o
4 g
i) 3
2 (3]
(]
4 O 1
£
5
=
< g
A

http://nitoprograms.blogspot.com

[The OSI Model (Open Systems Interconnection)

|

OSI Model

] (TCP/IP Model |

APPLICATION

Provides services/protocols fo

applications

FTP services

PRESENTATION

Data formatting, i.e. ANSI
Compression/Encryption

ANSI

SESSION

Controls conversations/Sessions

(Dialog. Control)

Integrity and Reliability
Descriptive naming

A

B

TRANSPORT

Fragmentation/Sequencing of dat

Reliable delivery
Error recovery
Flow Control

Muliplexing(PORTS)

a

Ports
Transparent
data services
Some Firewalls

\

B 0., 08

End to end delivery

Logical addressing

00 60 0 0

Topology

N ETWO R K Fragmentation/Sequencing Routers
for MTU
Routing
—
LLC Physical addressing
Error detection (FCS/CRC) Bridges or
D AT A - LI N K Acknowledgements switches
Packet/Frame header and trailer NIC Drivers
MAC bridging
.
Media interface
P H Y S I C Al. Transmition method Hubs
Signal strength Network Cards

c

Application

~

Host to Host

Internetwork

IP, ARP & ICMP

Network
Interface

Network Access

http://nitoprograms.blogspot.com

© Copyright 2008 Steven Iveson
www.networkstuff.eu

[ENCAPSULATION |

>

DATA

L@

SEGMENT

PACKET or DATAGRAM

FRAME

Bit or Data-Stream

L @

© @5@|

, PO oe o MALEE P oo s
e

What TCP/IP Provides

Aftects the application protocol design:

e Concept of a “Connection” (client connects to server,
after which the two sides are identical).

 Reliability: acknowledgements, checksums,
retransmission, discarding duplicate packets.

e Sequencing: packets are sorted to match original
sending order.

Does not affect the application protocol design:

e Flow and congestion control, adaptive timeouts, other
stuff: Nagle algorithm, delayed ACKs, etc.

http://nitoprograms.blogspot.com

Types of App Protocols

Message-based Stream-based

Request/Response

Poll/Status

Subscribe/Event

http://nitoprograms.blogspot.com

=

1 — Write a Spec

Having a clearly-defined specification written down
will reduce errors on both sides.

Terminology:
e “MUST” and “MAY” (RFC 2119).
e Include a glossary referencing established standards.

First Contact: decide who is client and who is server.

Choosing the Port (configurable if possible):
e [ANA: 0-1023 is off limits; 1024-49151 is “off limits”.
e Preventing ephemeral conflicts: KB812873

http://nitoprograms.blogspot.com

/
e Y

/

2 — App Protocol Versioning

Plan for the future now: enable future backwards
compatibility. It’s easier now than later!

Application protocol documents should always have a
version number defined in the document.

The version of the app protocol used at runtime should
be negotiated, not assumed.

Don't over-engineer! A simple implementation is to
send a list of supported versions, and let the other side
choose. Negotiating feature sets is more complex.

Decide in advance which version number changes are
backwards-compatible and which are not.

http://nitoprograms.blogspot.com

3 — Message Framing

» TCP does not preserve message boundaries (!)

* From the app’s perspective, TCP does not operate on
packets of data; it operates on streams of data.

» “Send” places bytes in the outgoing stream; “Receive”
reads bytes from the incoming stream.

e Send and Receive are not 1:1

* “Receive” was designed to allow partial reads.

Stream from A to B
A
Stream from B to A

http://nitoprograms.blogspot.com

/ R

3 — Message Framing

Most protocols are based on messages (e.g., query /
response), so we need message framing.

Solution A: Length Prefixing
 Specify length and endianness of length prefix.

e (May be hidden as a “message ID” if message lengths are
known, and may be at a fixed offset instead of a prefix.)

Solution B: Delimiters
e Escape sequences may be necessary.
e Requires flexible buffer scheme to receive efficiently.

Both solutions must consider DoS protection.

http://nitoprograms.blogspot.com

=

4 — Keepalives

TCP does not provide detection of dropped
connections. It is an idle protocol.

TCP will detect a dropped connection if data is sent.
The receiving side will not get a notification; this
results in a half-open connection.

Causes: router/computer crash, wireless lost.
Wrong solutions: ping or a second connection.

Correct solutions: a timer sending an empty message
frame or actual keepalive message. Or TCP option.

Keepalives must be done on both sides unless polling.

http://nitoprograms.blogspot.com

p

/

Miscellaneous Notes

Put plenty of good examples in the protocol
specification document to reduce ambiguity.

Implementation:
e There is nothing more important than logging.

» Have a full tracing system that can be turned on at runtime on
production machines. You'll need it.

« Dump every byte received and sent, as well as its
interpretation.

 When in doubt, error out. Connections can always be re-

established.

http://nitoprograms.blogspot.com

e L —

— i

XML over TCP/IP

Be familiar with the XML standard: www.w3.org.

Most protocols don't use: entities (except for
escaping), processing instructions, XSDs/DTDs,
namespaces; some don't use text data.

Message framing is technically not required but highly
recommended (it greatly simplifies parsing).

Keepalives are required, as any other protocol.

Protocol versioning is highly recommended.
XSDs/DTDs may interfere with compatibility.

e A common rule: ignore unknown elements and
attributes, instead of treating them as errors.

http://nitoprograms.blogspot.com

: PO oe o MALEE P oo o
e

XML over TCP/IP — Encoding

Each message becomes an XML document.

XML documents are sequences of Unicode characters;
TCP works on sequences (streams) of bytes. The
Encoding is what translates one to the other.
Three encoding decisions:

e Encoding to use: specify or auto-detect.

e Byte Order Mark: required by UTF-16; optional for UTF-8.

e XML Prolog. May cause problems if encoding attribute
is included (it’s easy to get wrong).

Do not perform an intermediate conversion to string.
http://nitoprograms.blogspot.com

" XML over TCP/IP — Pipeline

Data Handling Overview

Message

Socket Byte Stream Byte Array , Encoding

Framer

- -

Encoding Unicode Chars Parser Application

\ (Combine if possible) j

http://nitoprograms.blogspot.com

/

XML over TCP/IP — Messages

For each element, be sure to include:
e When the message is meaningful (e.g., a "Response” should
only be sent in response to a "Request").

e Which attributes and elements are required and which are
optional. This includes complex relations (e.g., a "Log"
element must contain at least one "Message" element and
exactly one "Source" element). Be sure to use terms with
specific definitions ("at least one", "exactly one", etc).

Document the format of any non-string data such as dates,
booleans, and integers.

Messages are data and commands, not behavior.

http://nitoprograms.blogspot.com

XML over TCP/IP — Naming

Use PascalCasing for element/attribute names.

Two-letter acronyms are in all caps: [O; compound
words are treated as a single word: Lifetime.

Avoid abbreviations, except Id and Ok.

Avoid language keywords: Event.

Prefer readability: MessageType, not TypeOfMessage.
Avoid “magic values”.

Attributesvs. child elements — be consistent.

http://nitoprograms.blogspot.com

/ \

/

The Most Important Point

Some people are mostly good; others are mostly bad - but
everyone has done something wrong.

The Bible says there is a penalty for “wrong-doing”: hell.

Jesus Christ, the Son of God, lived a perfect life and then
chose to die for you.

His blood can pay the penalty for your wrongdoing.

Repent of your sin and trust in Him to take you to Heaven
instead of hell.

e To the mostly good: everyone needs Jesus.
e To the mostly bad: if you receive Him, He will receive you.
Jesus offers you peace, and freedom from your sin.
e He’s the server socket; we have to connect to Him.
Knowing the protocol isn’t enough.

http://nitoprograms.blogspot.com

/ e —e
=
Thank youl!

en Cleary

