
Stephen Cleary

Designing Application Protocols for 
TCP/IP



Who is Stephen Cleary?
 Most TCP/IP experience came from 7 years of work as 

a systems integrator for Jervis B. Webb Company.

 “The TCP/IP guy” – designed current AGV protocol.

 Clients: GM (auto assembly lines), Syracuse News 
(paper delivery), Estee Lauder, RR Donnelley 
(bottling), Ricoh (toner), BlueScope Steel. (all 24x7)

 Components: AGVs, printing presses, hot backup 
systems, smart clients; many “bridge” devices to 
translate TCP/IP to/from serial or non-IP networks.

 Wrote C# socket class wrappers (part of Nito.Async).

http://nitoprograms.blogspot.com



What is an “Application Protocol”?
 An application protocol is all the communication 

above the TCP/IP layer.

 Examples: HTTP, FTP, POP, SOAP/HTTP.

 We will cover: Four important guidelines for TCP/IP 
application protocol design; XML over TCP/IP.

 We won’t cover: UDP, implementation specifics (e.g., 
optimal error recovery for the WinSock API).

 For C# implementation specifics, my blog has a 
TCP/IP .NET Sockets FAQ.

http://nitoprograms.blogspot.com



http://nitoprograms.blogspot.com



http://nitoprograms.blogspot.com



What TCP/IP Provides
 Affects the application protocol design:

 Concept of a “Connection” (client connects to server, 
after which the two sides are identical).

 Reliability: acknowledgements, checksums, 
retransmission, discarding duplicate packets.

 Sequencing: packets are sorted to match original 
sending order.

 Does not affect the application protocol design:

 Flow and congestion control, adaptive timeouts, other 
stuff: Nagle algorithm, delayed ACKs, etc.

http://nitoprograms.blogspot.com



Types of App Protocols

Message-based

http://nitoprograms.blogspot.com

Request/Response

Subscribe/Event

Poll/Status

Stream-based



1 – Write a Spec
 Having a clearly-defined specification written down 

will reduce errors on both sides.

 Terminology:

 “MUST” and “MAY” (RFC 2119).

 Include a glossary referencing established standards.

 First Contact: decide who is client and who is server.

 Choosing the Port (configurable if possible):

 IANA: 0-1023 is off limits; 1024-49151 is “off limits”.

 Preventing ephemeral conflicts: KB812873

http://nitoprograms.blogspot.com



2 – App Protocol Versioning
 Plan for the future now: enable future backwards 

compatibility. It’s easier now than later!

 Application protocol documents should always have a 
version number defined in the document.

 The version of the app protocol used at runtime should 
be negotiated, not assumed.

 Don’t over-engineer! A simple implementation is to 
send a list of supported versions, and let the other side 
choose. Negotiating feature sets is more complex.

 Decide in advance which version number changes are 
backwards-compatible and which are not.

http://nitoprograms.blogspot.com



3 – Message Framing
 TCP does not preserve message boundaries (!)

 From the app’s perspective, TCP does not operate on 
packets of data; it operates on streams of data.

 “Send” places bytes in the outgoing stream; “Receive” 
reads bytes from the incoming stream.

 Send and Receive are not 1:1

 “Receive” was designed to allow partial reads.

Stream from A to B

Stream from B to A
A B

http://nitoprograms.blogspot.com



3 – Message Framing
 Most protocols are based on messages (e.g., query / 

response), so we need message framing.

 Solution A: Length Prefixing
 Specify length and endianness of length prefix.

 (May be hidden as a “message ID” if message lengths are 
known, and may be at a fixed offset instead of a prefix.)

 Solution B: Delimiters
 Escape sequences may be necessary.

 Requires flexible buffer scheme to receive efficiently.

 Both solutions must consider DoS protection.

http://nitoprograms.blogspot.com



4 – Keepalives
 TCP does not provide detection of dropped 

connections. It is an idle protocol.

 TCP will detect a dropped connection if data is sent. 
The receiving side will not get a notification; this 
results in a half-open connection.

 Causes: router/computer crash, wireless lost.

 Wrong solutions: ping or a second connection.

 Correct solutions: a timer sending an empty message 
frame or actual keepalive message. Or TCP option.

 Keepalives must be done on both sides unless polling.

http://nitoprograms.blogspot.com



Miscellaneous Notes
 Put plenty of good examples in the protocol 

specification document to reduce ambiguity.

 Implementation:

 There is nothing more important than logging.

 Have a full tracing system that can be turned on at runtime on 
production machines. You’ll need it.

 Dump every byte received and sent, as well as its 
interpretation.

 When in doubt, error out. Connections can always be re-
established.

http://nitoprograms.blogspot.com



XML over TCP/IP
 Be familiar with the XML standard: www.w3.org.

 Most protocols don’t use: entities (except for 
escaping), processing instructions, XSDs/DTDs, 
namespaces; some don’t use text data.

 Message framing is technically not required but highly 
recommended (it greatly simplifies parsing).

 Keepalives are required, as any other protocol.

 Protocol versioning is highly recommended. 
XSDs/DTDs may interfere with compatibility.
 A common rule: ignore unknown elements and 

attributes, instead of treating them as errors.

http://nitoprograms.blogspot.com



XML over TCP/IP – Encoding
 Each message becomes an XML document.

 XML documents are sequences of Unicode characters; 
TCP works on sequences (streams) of bytes. The 
Encoding is what translates one to the other.

 Three encoding decisions:

 Encoding to use: specify or auto-detect.

 Byte Order Mark: required by UTF-16; optional for UTF-8.

 XML Prolog. May cause problems if encoding attribute 
is included (it’s easy to get wrong).

 Do not perform an intermediate conversion to string.

http://nitoprograms.blogspot.com



XML over TCP/IP – Pipeline

Socket Byte Stream
Message 
Framer Byte Array Encoding

ParserEncoding Unicode Chars XML Application

(Combine if possible)

Data Handling Overview

http://nitoprograms.blogspot.com

Log

Log



XML over TCP/IP – Messages
 For each element, be sure to include:

 When the message is meaningful (e.g., a "Response" should 
only be sent in response to a "Request").

 Which attributes and elements are required and which are 
optional. This includes complex relations (e.g., a "Log" 
element must contain at least one "Message" element and 
exactly one "Source" element). Be sure to use terms with 
specific definitions ("at least one", "exactly one", etc).

 Document the format of any non-string data such as dates, 
booleans, and integers.

 Messages are data and commands, not behavior.

http://nitoprograms.blogspot.com



XML over TCP/IP – Naming
 Use PascalCasing for element/attribute names.

 Two-letter acronyms are in all caps: IO; compound 
words are treated as a single word: Lifetime.

 Avoid abbreviations, except Id and Ok.

 Avoid language keywords: Event.

 Prefer readability: MessageType, not TypeOfMessage.

 Avoid “magic values”.

 Attributes vs. child elements – be consistent.

http://nitoprograms.blogspot.com



The Most Important Point
 Some people are mostly good; others are mostly bad – but 

everyone has done something wrong.
 The Bible says there is a penalty for “wrong-doing”: hell.
 Jesus Christ, the Son of God, lived a perfect life and then 

chose to die for you.
 His blood can pay the penalty for your wrongdoing.
 Repent of your sin and trust in Him to take you to Heaven 

instead of hell.
 To the mostly good: everyone needs Jesus.
 To the mostly bad: if you receive Him, He will receive you.

 Jesus offers you peace, and freedom from your sin.
 He’s the server socket; we have to connect to Him.

Knowing the protocol isn’t enough.

http://nitoprograms.blogspot.com



Stephen Cleary

Thank you!


