
Stephen Cleary

Designing Application Protocols for 
TCP/IP



Who is Stephen Cleary?
 Most TCP/IP experience came from 7 years of work as 

a systems integrator for Jervis B. Webb Company.

 “The TCP/IP guy” – designed current AGV protocol.

 Clients: GM (auto assembly lines), Syracuse News 
(paper delivery), Estee Lauder, RR Donnelley 
(bottling), Ricoh (toner), BlueScope Steel. (all 24x7)

 Components: AGVs, printing presses, hot backup 
systems, smart clients; many “bridge” devices to 
translate TCP/IP to/from serial or non-IP networks.

 Wrote C# socket class wrappers (part of Nito.Async).

http://nitoprograms.blogspot.com



What is an “Application Protocol”?
 An application protocol is all the communication 

above the TCP/IP layer.

 Examples: HTTP, FTP, POP, SOAP/HTTP.

 We will cover: Four important guidelines for TCP/IP 
application protocol design; XML over TCP/IP.

 We won’t cover: UDP, implementation specifics (e.g., 
optimal error recovery for the WinSock API).

 For C# implementation specifics, my blog has a 
TCP/IP .NET Sockets FAQ.

http://nitoprograms.blogspot.com



http://nitoprograms.blogspot.com



http://nitoprograms.blogspot.com



What TCP/IP Provides
 Affects the application protocol design:

 Concept of a “Connection” (client connects to server, 
after which the two sides are identical).

 Reliability: acknowledgements, checksums, 
retransmission, discarding duplicate packets.

 Sequencing: packets are sorted to match original 
sending order.

 Does not affect the application protocol design:

 Flow and congestion control, adaptive timeouts, other 
stuff: Nagle algorithm, delayed ACKs, etc.

http://nitoprograms.blogspot.com



Types of App Protocols

Message-based

http://nitoprograms.blogspot.com

Request/Response

Subscribe/Event

Poll/Status

Stream-based



1 – Write a Spec
 Having a clearly-defined specification written down 

will reduce errors on both sides.

 Terminology:

 “MUST” and “MAY” (RFC 2119).

 Include a glossary referencing established standards.

 First Contact: decide who is client and who is server.

 Choosing the Port (configurable if possible):

 IANA: 0-1023 is off limits; 1024-49151 is “off limits”.

 Preventing ephemeral conflicts: KB812873

http://nitoprograms.blogspot.com



2 – App Protocol Versioning
 Plan for the future now: enable future backwards 

compatibility. It’s easier now than later!

 Application protocol documents should always have a 
version number defined in the document.

 The version of the app protocol used at runtime should 
be negotiated, not assumed.

 Don’t over-engineer! A simple implementation is to 
send a list of supported versions, and let the other side 
choose. Negotiating feature sets is more complex.

 Decide in advance which version number changes are 
backwards-compatible and which are not.

http://nitoprograms.blogspot.com



3 – Message Framing
 TCP does not preserve message boundaries (!)

 From the app’s perspective, TCP does not operate on 
packets of data; it operates on streams of data.

 “Send” places bytes in the outgoing stream; “Receive” 
reads bytes from the incoming stream.

 Send and Receive are not 1:1

 “Receive” was designed to allow partial reads.

Stream from A to B

Stream from B to A
A B

http://nitoprograms.blogspot.com



3 – Message Framing
 Most protocols are based on messages (e.g., query / 

response), so we need message framing.

 Solution A: Length Prefixing
 Specify length and endianness of length prefix.

 (May be hidden as a “message ID” if message lengths are 
known, and may be at a fixed offset instead of a prefix.)

 Solution B: Delimiters
 Escape sequences may be necessary.

 Requires flexible buffer scheme to receive efficiently.

 Both solutions must consider DoS protection.

http://nitoprograms.blogspot.com



4 – Keepalives
 TCP does not provide detection of dropped 

connections. It is an idle protocol.

 TCP will detect a dropped connection if data is sent. 
The receiving side will not get a notification; this 
results in a half-open connection.

 Causes: router/computer crash, wireless lost.

 Wrong solutions: ping or a second connection.

 Correct solutions: a timer sending an empty message 
frame or actual keepalive message. Or TCP option.

 Keepalives must be done on both sides unless polling.

http://nitoprograms.blogspot.com



Miscellaneous Notes
 Put plenty of good examples in the protocol 

specification document to reduce ambiguity.

 Implementation:

 There is nothing more important than logging.

 Have a full tracing system that can be turned on at runtime on 
production machines. You’ll need it.

 Dump every byte received and sent, as well as its 
interpretation.

 When in doubt, error out. Connections can always be re-
established.

http://nitoprograms.blogspot.com



XML over TCP/IP
 Be familiar with the XML standard: www.w3.org.

 Most protocols don’t use: entities (except for 
escaping), processing instructions, XSDs/DTDs, 
namespaces; some don’t use text data.

 Message framing is technically not required but highly 
recommended (it greatly simplifies parsing).

 Keepalives are required, as any other protocol.

 Protocol versioning is highly recommended. 
XSDs/DTDs may interfere with compatibility.
 A common rule: ignore unknown elements and 

attributes, instead of treating them as errors.

http://nitoprograms.blogspot.com



XML over TCP/IP – Encoding
 Each message becomes an XML document.

 XML documents are sequences of Unicode characters; 
TCP works on sequences (streams) of bytes. The 
Encoding is what translates one to the other.

 Three encoding decisions:

 Encoding to use: specify or auto-detect.

 Byte Order Mark: required by UTF-16; optional for UTF-8.

 XML Prolog. May cause problems if encoding attribute 
is included (it’s easy to get wrong).

 Do not perform an intermediate conversion to string.

http://nitoprograms.blogspot.com



XML over TCP/IP – Pipeline

Socket Byte Stream
Message 
Framer Byte Array Encoding

ParserEncoding Unicode Chars XML Application

(Combine if possible)

Data Handling Overview

http://nitoprograms.blogspot.com

Log

Log



XML over TCP/IP – Messages
 For each element, be sure to include:

 When the message is meaningful (e.g., a "Response" should 
only be sent in response to a "Request").

 Which attributes and elements are required and which are 
optional. This includes complex relations (e.g., a "Log" 
element must contain at least one "Message" element and 
exactly one "Source" element). Be sure to use terms with 
specific definitions ("at least one", "exactly one", etc).

 Document the format of any non-string data such as dates, 
booleans, and integers.

 Messages are data and commands, not behavior.

http://nitoprograms.blogspot.com



XML over TCP/IP – Naming
 Use PascalCasing for element/attribute names.

 Two-letter acronyms are in all caps: IO; compound 
words are treated as a single word: Lifetime.

 Avoid abbreviations, except Id and Ok.

 Avoid language keywords: Event.

 Prefer readability: MessageType, not TypeOfMessage.

 Avoid “magic values”.

 Attributes vs. child elements – be consistent.

http://nitoprograms.blogspot.com



The Most Important Point
 Some people are mostly good; others are mostly bad – but 

everyone has done something wrong.
 The Bible says there is a penalty for “wrong-doing”: hell.
 Jesus Christ, the Son of God, lived a perfect life and then 

chose to die for you.
 His blood can pay the penalty for your wrongdoing.
 Repent of your sin and trust in Him to take you to Heaven 

instead of hell.
 To the mostly good: everyone needs Jesus.
 To the mostly bad: if you receive Him, He will receive you.

 Jesus offers you peace, and freedom from your sin.
 He’s the server socket; we have to connect to Him.

Knowing the protocol isn’t enough.

http://nitoprograms.blogspot.com



Stephen Cleary

Thank you!


