Lua

A lightweight,
portable, dynamic
scripting language

Scott Vokes - BarCamp GR, Aug. 21 2009

"I like Lua for the same reason | like WikiWiki:
it's clean, simple, and light. The authors had a
pure vision and left out the right things."
- Ashley Fryer

Real world usage

* Adobe Lightroom
* World of Warcraft (and several other games)

* nmap, monotone, tokyocabinet,
awesome, ion, ...

Features

Desighed primarily for embedding:
A 200k dynamic library (800k source)

Trivial to integrate with existing C projects
Incremental garbage collector

Portable to any platform w/ ANSI C compiler
Excellent for rapid prototyping

“The Good Parts”

Serious computer science juju

First-class functions
Tail-call optimization

Lexical scope, with proper closures
One-pass byte-compiler
Register-based virtual machine
Lightweight, assymetric co-routines
Dynamic linking

Scheme-like semantics

History

“SOL” — Simple Object Language, c. 1993
PUC-Rio and Tecgraf
Petrobras

Major influences:
SNOBOL, Icon, AWK, Bibtex, Scheme

Example code

—— Flatten the whitespace in a line.
function flatten_whitespace(line)
line = string.gsub(line, "[\t\n]+", " ")
if string.sub(line, 1, 1) == " " then
return string.sub(line, 2)
else
return line
end

end

Core data types

* Number
— Doubles by default (precise to 2753, then floating)
— Not boxed in a pointer, numeric ops are fast

e String
— Array of raw bytes w/ a given length

— Interned (comparison by pointer)
— Can be UTF-8, raw JPEG data with \Os, etc.

Core data types, cnt’d.

Boolean
— True, false

Nil
Function

Tables

— Assoc. array, like Python’s “dictionary”
Thread (co-routine)

Userdata

— Opaque reference to external C pointer
— Full userdata have metatables, garbage-collection

Metatables

Hooks to define behavior for tables and udata
__index: Called when a slot doesn’t exist

— Good for e.g. inheritance, proxying, error logging

__newindex: Called for creating a slot

— Read-only tables, proxy to key-value database, etc.

__call: Using a table/udata as a function

— “functables”

Environment control

* You can sandbox a function (e.g. compiling

and running end-users' code) with setfenv and
a custom environment

 Environments are just tables, so you can use
metatables...

Data serialization

JSON:
{
"firstName": "John",
"lastName": "Smith",
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"
}I
"ohoneNumbers": [
{ "type": "home", "number": "212 555-1234" 1},

{ "type": "fax", "number": "646 555-4567" }

Data serialization in Lua

Same, in Lua:
{
firstname="John",
lastname="Smith",
address = { streetAddress="21 2nd Street",
city="New York",
state="NY",
postalCode=10021
Y
phoneNumbers = {
{ type="home", number="212 555-1234" 1},
{ type="fax", number="646 555-4567" 1},

}

Configuration file format

device="rallO"

sudo=true

Network { key="home", nwid="bluebuddha", wpa="secret-o-rama" }
Network { key="founders", nwid="Founders", wep=".." }

Network { key="sparrows", nwid="The Sparrows" }

Network { key="schulersa", nwid="schuler-alpine" }

Network { key="schulersd", nwid="Schuler Downtown" }

Network { key="work", nwid="configuraguestnetwork", wpa=".." }
Network { key="itsagrind", nwid="It's A Grind" }

Network { key="madcap", nwid="secure", wpa="peoplebeforeprofit" }
Network { key="ferris", nwid="riverfront" }

Some downsides

The usual “dynamic language” tradeoffs

The module system came late, may be too
simple (no linker, just a global table of pkgs)

Tables are indexed from 1
Vars are global unless “local” is used
Any missing args are nil, so APls are too fluid

Since you can “fork your own Lua”, there
aren’t universal code conventions

Going deeper

The C API

The debug API
LPEG

LuallT

Questions?

For further information:
lua.org

lua-users.org

